Math 261
 Fall 2023
 Lecture 12

Feb 19-8:47 AM
class QE 7
Use ε and δ definition to prove $\lim _{x \rightarrow 6}\left(\frac{1}{6} x+4\right)=5$ $f(x)=\frac{1}{6} x+4 \quad 1$) verify the limit
$L=5$
$\lim \left(\frac{1}{6} x+4\right)=\frac{1}{6}(6)+4=1+4=5 \checkmark$
$a=6$ $x \rightarrow 6$
for $\varepsilon>0$, there is a $\delta>0$ such that
$|f(x)-L|<\varepsilon$ whenever $|x-a|<\delta$
$\left|\frac{1}{6} x+4-5\right|<\varepsilon$
$\begin{aligned} & \left|\frac{1}{6} x-1\right|<\varepsilon \\ & \text { multiply by } 6 \\ & 6\left|\frac{1}{6} x-1\right|<6 \varepsilon\end{aligned}$
$\begin{aligned} & \mid \delta=6 \varepsilon \\ & \text { choose }\end{aligned}$
$|x-6|<6 \varepsilon \varepsilon$
for any function $f(x)$, the first derivative of it is $f^{\prime}(x), F$-prime of x, and can be found by evaluating the following limit if exists

$$
\begin{gathered}
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
\text { ex: } \operatorname{lind}_{h \rightarrow 0} f^{\prime}(x) \text { for } f(x)=3 x^{2}-5 \\
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{3(x+h)^{2}-5-\left(3 x^{2}-5\right)}{h} \\
=\lim _{h \rightarrow 0} \frac{3 x^{2}+6 x h+3 h^{2}-5-3 x^{2}+5}{h} \\
=\lim _{h \rightarrow 0} \frac{6 x h+3 h^{2}}{h}=\lim _{h \rightarrow 0} \frac{K(6 x+3 h)}{h}=\lim _{h \rightarrow 0}(6 x+3 h) \\
=6 x
\end{gathered}
$$

Sep 18-10:30 AM
find $f^{\prime}(x)$ for $f(x)=\frac{1}{x}$ using the limit def.

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\frac{1}{x+h}-\frac{1}{x}}{h} \\
&=\lim _{h \rightarrow 0} \frac{x(x+h) \cdot \frac{1}{x+h}-x(x+h) \cdot \frac{1}{x}}{x(x+h) \cdot h} \\
&=\lim _{h \rightarrow 0} \frac{x-x-h}{x(x+h) \cdot h}=\lim _{h \rightarrow 0} \frac{-h}{x(x+h) \cdot h} \\
&=\lim _{h \rightarrow 0} \frac{-1}{x(x+h)}=\frac{-1}{x(x+0)}=\frac{-1}{x^{2}} \\
& f(x)=\frac{1}{x} \Rightarrow \operatorname{Domain} \quad(-\infty, 0) \cup(0, \infty) \\
& f^{\prime}(x)=\frac{-1}{x^{2}} \Rightarrow \quad \Rightarrow \quad(-\infty, 0) \cup(0, \infty)
\end{aligned}
$$

Use limit def. of $f^{\prime}(x)$ to find $f^{\prime}(x)$ for $f(x)=\sqrt{x}$.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\sqrt{x+h}-\sqrt{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{(\sqrt{x+h}+\sqrt{x})(\sqrt{x+h}-\sqrt{x})}{(\sqrt{x+h}+\sqrt{x}) \cdot h}=\lim _{h \rightarrow 0} \frac{A^{2}-B^{2}}{h(x+h)^{2}-(\sqrt{x})^{2}} h(\sqrt{x+h}+\sqrt{x}) \\
& =\lim _{h \rightarrow 0} \frac{x+\frac{1}{h}-x}{h(\sqrt{x+h}+\sqrt{x})}=\lim _{h \rightarrow 0} \frac{1}{\sqrt{x+h}+\sqrt{x}} \\
& =\frac{1}{\sqrt{x+0}+\sqrt{x}}=\frac{1}{\sqrt{x}+\sqrt{x}}=\frac{1}{2 \sqrt{x}} \\
F(x) & =\sqrt{x} \rightarrow \text { Domain }[0, \infty) \\
F^{\prime}(x) & =\frac{1}{2 \sqrt{x}} \rightarrow \text { Domain } \quad(0, \infty)
\end{aligned}
$$

Sep 18-10:43 AM

Given $f(x)=x^{2}-4 x$

1) find $f(2) \quad f(2)=2^{2}-4(2)=4-8=-4$
2) Find $f^{\prime}(x)$ using limit def.

$$
\begin{aligned}
f^{\prime}(x)= & \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{(x+h)^{2}-4(x+h)-x^{2}+4 x}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}-4 x-4 h-x^{2}+4 x}{h}=\lim _{h \rightarrow 0} \frac{h(2 x+h-4)}{h} \\
& =\lim _{h \rightarrow 0}(2 x+h-4)=2 x+0-4=2 x-4
\end{aligned}
$$

3) find $f^{\prime}(2)=2(2)-4=0$

Use ε and δ definition to prove $\lim _{x \rightarrow 0} x^{3}=0$.

$$
\begin{aligned}
f(x) & =x^{3} \\
L & =0 \\
a & =0
\end{aligned}
$$

verify the limit

$$
\lim x^{3}=0^{3}=0 \sqrt{ }
$$

$$
x \rightarrow 0
$$

For every $\varepsilon>0$, there is a $\delta>0$ such that

$$
\left.\begin{array}{ll}
|f(x)-L|<\varepsilon \quad \text { whenever } & |x-a|<\delta . \\
\left|x^{3}-0\right|<\varepsilon \\
|x-0|<\delta \\
|x|<\varepsilon
\end{array} \right\rvert\, \begin{array}{ll}
|x|<\delta
\end{array}
$$

Sep 18-10:57 AM
use ε and δ definition to prove $\lim _{x \rightarrow 5}\left(x^{2}+4 x\right)=45$.
$f(x)=x^{2}+4 x \quad$ verify the limit

$$
\begin{aligned}
& f(x)=x+4 x \\
& L=45 \\
& a=5
\end{aligned} \quad \lim _{x \rightarrow 5}\left(x^{2}+4 x\right)=5^{2}+4(5)=25+20=145
$$

For every $\varepsilon>0$, there is a $\delta>0$ such that $|f(x)-h|<\varepsilon$ whenever $|x-a|<\delta$ $\left|x^{2}+4 x-45\right|<\varepsilon=|x-5|<\delta$ $|(x+9)(x-5)|<\varepsilon$ $|x+9||x-5|<\varepsilon$
$\delta=\frac{\varepsilon}{c}$
is $|x+9|<C$, then $c|x-5|<\varepsilon \rightarrow|x-5|<\frac{\varepsilon}{C}$
If we choose $\delta \leq 1$, then $|x-5|<1$

$$
\delta=\min \left\{1, \frac{\varepsilon}{15}\right\}
$$

If $\varepsilon=3, \delta=\min \left\{1, \frac{3}{15}\right\}=\min \left\{1, \frac{1}{5}\right\}=\frac{1}{5}=.2$

$$
\begin{aligned}
& \text { use } \varepsilon \text { and } \delta \text { definition to prove } \lim _{x \rightarrow 2} x^{3}=8 \\
& f(x)=x^{3} \quad \text { For every } \varepsilon>0 \text {, there is a } 5>0 \\
& L=\delta \sqrt{ } \quad \text { Such that } \\
& a=2 \quad|f(x)-H|<\varepsilon \text { whenever }|x-a|<\delta \\
& \left|x^{3}-8\right|<\varepsilon \quad \text { whenever } \quad|x-a|<\delta \\
& \text { factor } \\
& \begin{array}{ll}
\left.\begin{array}{ll}
\text { factor } \\
\mid(x-2)\left(x^{2}+2 x+4\right) \\
\text { keep } & \text { Bound }
\end{array} \right\rvert\,<\varepsilon \text { whenever }|x-2|<\delta \\
& \delta=\frac{\varepsilon}{c}
\end{array} \\
& \text { If }\left|x^{2}+2 x+4\right|<C \text {, then }|(x-2) \cdot C|<\varepsilon \rightarrow|x-2|<\frac{\varepsilon}{C} \\
& \text { If we wish } \delta \leq 1 \text {, then }|x-2|<1 \\
& -1<x-2<1+2 \quad 1<x<3 \rightarrow|x|<3 \\
& |x|<3 \rightarrow\left|x^{2}\right|<9,|2 x|<6 \\
& \left|x^{2}+2 x+4\right|<9+6+4<19 \\
& \text { So } \delta=\min \left\{1, \frac{\varepsilon}{19}\right\}
\end{aligned}
$$

Sep 18-11:17 AM

$$
\begin{aligned}
& \text { Use } \varepsilon \text { and } \delta \text { definition to prove } \lim _{x \rightarrow \frac{1}{2}} \frac{1}{x}=2 \\
& f(x)=\frac{1}{x} \quad \text { verify the limit } \\
& L=2 \& \quad \lim _{x \rightarrow 1 / 2} \frac{1}{x}=\frac{1}{1 / 2}=2 \\
& a=\frac{1}{2} \quad\left|x-\frac{1}{2}\right|<\delta \\
& \text { For every } \varepsilon>0, \text { there is a } \delta>0 \text { such that } \\
& \begin{array}{l}
|f(x)-L|<\varepsilon \quad \text { whenever } \quad|x-a|<\delta \\
\left|\frac{1}{x}-2\right|<\varepsilon \quad\left|x-\frac{1}{2}\right|<\delta
\end{array} \\
& \begin{array}{l}
\left.\frac{1-2 x}{x} \right\rvert\,<\varepsilon \\
\left|\frac{-2\left(x-\frac{1}{2}\right)}{x}\right|<\varepsilon \\
\left|\frac{-2}{x}\left(x-\frac{1}{2}\right)\right|<\varepsilon \\
\left|\frac{2}{x}\right|\left|x-\frac{1}{2}\right|<\varepsilon
\end{array} \\
& \text { If Pick } \delta=\frac{\varepsilon}{c}\left|\frac{2}{x}\right|<C, \text { then } c\left|x-\frac{1}{2}\right|<\varepsilon,\left|x-\frac{1}{2}\right|<\frac{\varepsilon}{c}
\end{aligned}
$$

